ISBN 970-27-1045-6

VEGETACIÓN SECUNDARIA COMO UN POTENCIAL BIOLÓGICO PARA LA REVEGETACIÓN DE ÁREAS DEGRADADAS POR LA MINERÍA A CIELO ABIERTO EN LA ZONA DE AMORTIGUAMIENTO DEL BOSQUE LA PRIMAVERA

Dr. Alejandro Muñoz Urias¹, Rosa de Lourdes Romo Campos², Sergio Honorio Contreras Rodríguez², Martín Huerta Martínez¹.

¹Departamento de Ecología, ²Departamento de Ciencias Ambientales correo electronico: almunoz@cucba.udg.mx

Introducción

El desarrollo de la minería tiene una consecuencia directa sobre la pérdida de ecosistemas, por lo que desde hace varias décadas se han buscado alternativas de manejo de los paisajes mineros y la restauración de ecosistemas, rehabilitación o recomposición de las áreas afectadas. Particularmente entre los ecólogos ha habido un creciente interés por la restauración ecológica considerando que existe la probabilidad de autoregeneración de los ecosistemas a través de los procesos sucesionales (Johnson y Bradshaw, 1979). El potencial de restauración se asocia a la presencia de propágulos que representan posibles estados futuros de la vegetación y se considera como uno de los índices de posible éxito. La revegetación es la práctica común tanto en los procesos de restauración ecológica como en la rehabilitación o recomposición de áreas donde es imposible restaurar el ecosistema original. La revegetación de áreas degradadas por la actividad minera es de primordial importancia en los proyectos de rehabilitación, y debe ser planificada para que al cierre de la mina puedan realizarse acciones que aseguren una mayor probabilidad de ser autosostenibles en el largo plazo. Sin embargo, la revegetación debe ser efectuada desde el comienzo de la actividad extractiva particularmente en las vertientes que puedan tener un efecto inmediato en la entrada de sedimentos a los cursos de agua. En este sentido, la selección de especies juega un papel crucial para garantizar la rehabilitación de áreas alteradas por la actividad minera. Las especies pueden ser seleccionadas usando criterios ecológicos que van a depender de las metas de los planes de revegetación, entre ellos las condiciones físico-químicas del suelo, la disponibilidad de semillas, su forma y rapidez de crecimiento, clima, compatibilidad con otras especies a ser plantadas. Johnson y Bradshaw (1979) señalan que la selección de especies está sujeta a los objetivos de uso del suelo en correspondencia con las características específicas del sitio y que las especies pioneras que invaden las zonas afectadas deben ser consideradas en primera instancia en los planes de revegetación. La zona conurbada del bosque la Primavera tradicionalmente ha sido explotado el subsuelo para obtener materiales de construcción en donde la topografía de estas áreas se caracteriza por tener pendientes pronunciadas y fácilmente erosionables debido a que poseen suelos poco desarrollados de tipo regosol, además, estos terrenos son constantemente perturbados por actividades como los incendios y sobrepastoreo, por lo que se presentan limitantes para el desarrollo de la vegetación y protección de los suelos.

Los objetivos de este trabajo son:

- Determinar cuales son las especies que se establecen en los bancos de material abandonado en la periferia del bosque de la primavera
- Caracterizar las comunidades vegetales que se establecen en suelos desnudos
- Precisar cuales son las especies vegetales de mayor valor de importancia dentro de la comunidad
- Establecer las posibles asociaciones entre especies dentro de los bancos de material abandonados.

Materiales y métodos

Área de estudio:

El estudio se realizó en tres bancos de material abandonado que se encuentran ubicados en la zona de influencia del Bosque de la Primavera. (Soledad 7 años de abandono, Goterita 8 años de abandono y Picuda 12 años de abandono) 14 hectáreas, con pendientes del 10 al 45% (Figura 1). Esta zona presenta suelos de tipo y regosol son suelos no consolidados con textura arenosa, franco-arenosa; con una profundidad promedio de 20 cm; pobres en materia orgánica(menor al 0.2%) y suelos ligeramente ácidos. Según la clasificación climática de Köppen el clima es semicálido subhúmedo con lluvias de verano, que particularmente tienen una precipitación total de 900 mm y la temperatura promedio anual es de 19°C. presenta dos tipos de comunidades de vegetación colonizadora localizada en parches de comunidades arbustivas y comunidades herbáceas, estas últimas dominadas por Poaceae, Asteraceae y Leguminosae en su gran mayoría y en menor porcentaje por Malváceas, Euphorbiaceae, Rubiaceae. Amaranthaceae y Brassicaceae.

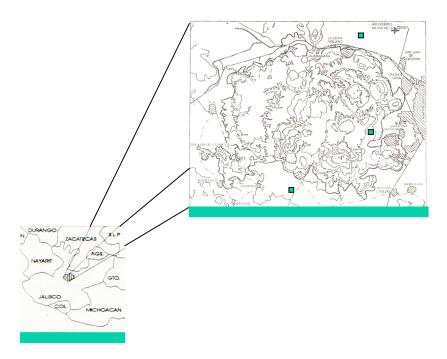


Figura 1. Mapa de localización de las minas a cielo abierto estudiadas

Entre los parches dominados por comunidades de herbáceas se realizaron 70 muestreos sistemáticos al azar cada 50 metros, estableciendo parcelas de 25 X 25 cm. En cada parcela se registraron las especies presentes, el número de individuos o macollas por especie y se midió el área de cobertura de cada una de las especies. se midieron los diámetros mayor (a) y menor (b) de la copa de cada planta con una cinta métrica y se calculó el área de cobertura A= p·a·b/4). El área basal de cada individuo se calculó a partir del diámetro de los tallos medidos basalmente con una cinta métrica.. En cada parcela se contabilizaron las especies presentes, el número de individuos o macollas por especie y se midió el área de cobertura de cada una de las especies.

Análisis de la información: La importancia de cada especie en las comunidades herbáceas se estimó en función de la densidad, dominancia y frecuencia según la fórmula propuesta por Curtis y McIntosh (Matteucci y Colma, 1982). La densidad fue estimada a partir del conteo del número de individuos por especie en las diferentes parcelas, i= $(ni/N) \times 100$ y la dominancia por la abundancia relativa de la especie, i= $(ai/\sum ai) \times 100$.

La frecuencia fue medida mediante: $i = [(fi/2S)/(\sum fi/2S)] \times 100$.

También se calculó el Índice de Jacqard que estima la semejanza entre comunidades y se expresa por la siguiente fórmula:

$$CCj = \frac{C}{S_1 + S_2 - C}$$

Donde:

 S_1 y S_2 = Número de especies en la comunidad 1 y 2 respectivamente C = Número de especies comunes en ambas comunidades

Para el diagrama de asociación entre especies sólo se tomaron en cuenta las interacciones positivas y la que cuentan con un nivel de significación del 99%.

Resultados

En las tres minas a cielo abierto fueron encontradas 50 especies representadas en nueve familias botánicas que fueron *Poaceae*,

En los cuadros 1, 2 y 3 se presentan las especies herbáceas encontradas en los bancos de material geológico Picuda, La Soledad y La Goterita, así como los valores de Importancia, riqueza y similitud, donde se observa que las especies con mayor valor de importancia son las de las familias Leguminosae, Poaceae y Asteraceae. La mayoría de las especies se comportan como pioneras invasoras de áreas degradadas. En lo que respecta a los valores de riqueza dos comunidades La Goterita y La Picuda tienen valores semejantes. En cuanto a los valores de dominancia se corrobora que las especies que dominan estas comunidades son las gramíneas, seguidas por las compuestas y leguminosas.

Cuadro 1. Valores de importancia e Índices de Riqueza y Similitud en la mina a cielo abierto La Picuda

Cuadro 2. Valores de Importancia e Índices de Riqueza y Similitud en la mina a cielo abierto La Goterita

PICUDA	
ESPECIE	V.I.
Aeschynomene americana	1.72733374
Aeschynomene villosa var. longifolia	62.367362
Aristida appressa	2.15515289
Aristida divaricata	9.3163405
Bidens pilosa	5.5881371
Boutelouba repens	1.76822452
Cosmos bipinnatus	3.22541998
Cynodon dactylon	5.48089278
Cyperus amabilis	3.95283578
Cyperus scuamifolio	3.47751679
Chamaecrista nictitans	5.04998106
Chamaechrista rotundifolia	6.64479361
Dalea humilis	5.38060677
Dalea leporina	9.66029227
Eragrostis mexicana	0.86334554
Eriosema pulchelum	2.04497187
Euphorbia hirta	3.64406142
Heteroteca inuloides	0.87518137
Lepidium sp.	1.79003661
Macroptilium gibbosifolium	2.32090102
Mitracarpus hirtus	2.74857436
Mulhenbergia sp.	20.1612109
Paspalum notatum	2.22141629
Rhynchelytrum repens	48.2286387
Shruhria pinnata	8.56152129
Sida collina	0.94024069
Sorgastrum nutans	3.4904157
Tegetes micrantha	42.4915672
Zinnia angustifolia	6.99941537
Zinnia perubiana	4.69466577
Zornia reticulata	22.1289462
Riqueza	32
Shannon	3.39
Shannon max	4.95
equidad	68%

La Goterita	
ESPECIE	V. I.
Rhynchelytrum repens	66.87
Paspalum plicatum	41.03
Tagetes micrantha	33.69
Cynodon dactylon	23.20
Aeschynomene longifolia	21.07
Paspalum notatum	14.74
Eragrostis mexicana	12.86
Dalea leporina	8.38
Setaria geniculata	8.03
Crotalaria pumila	7.06
Desmodium aparines	5.90
Chamaecrista rotundifolia	5.76
Macroptilium gibbosifolium	5.14
Digitaria sanguinalis	4.87
Eleusine indica	4.09
Aristida appressa	3.73
Cosmos bipinnatus	3.06
Tithonia tubaeformis	2.62
Eragrostis plumbea	2.61
Sorgastrum nutans	2.37
Cyperus amabilis	2.37
Zornia reticulata	2.02
Cenchrus echinatus	1.96
Aeschynomene americana	1.89
Euphorbia h.	1.62
Zinnia angustifolia	1.57
Richardia scabra	1.51
Heterotheca inuloides	1.50
Crotalaria sagittalis	1.49
Eriosema pulchelum	1.06
Taraxacum officinale	1.03
Sida collina	0.95
Amaranthus hibridus	0.90
Paspalum convexum	0.81
Chamaechrista nictitans	0.76
Cyperus esculentus	0.75

Chloris virgata	0.75
Shannon	3.57
Shannon max	5.2
Equidad	68%

Cuadro 3. Valores de importancia e Índices de Riqueza y Similitud en la mina a cielo abierto La Soledad

Cuadro 4. Valores de Dominacia de especies herbáceas en tres minas de explotación a cielo abierto

La Soledad	
ESPECIE	V. I.
Cynodon dactylon	67.57
Dalea leporina	38.88
Digitaria sanguinalis	18.55
Rhynchelytrum repens	17.54
Zinnia angustifolia	16.17
Bidens pilosa	16.15
Sporobolus indicus	13.15
Gnaphalium chartaceum	12.23
Crotalaria pumila	11.14
Dalea humilis	10.55
Aristida appressa	10.21
Zornia reticulata	9.22
Aeschynomene longifolia	8.32
Chloris virgata	7.26
Eragrostis mexicana	5.39
Tagetes micrantha	5.36
Euphorbia hirta	5.03
Cenchrus echinatus	4.92
Mitracarpus hirtus	4.61
Sida espinosa	4.24
Desmodium distortum	3.36
Paspalum notatum	3.05
Chamaecrista nictitans	1.92
Eriosema pulchelum	1.92
Muhlenbergia sp.	1.30

indice de			
dominancia			
ESPECIE	Soledad	Goterita	Picuda
Gnaphalium			
chartaceum	3.06E-02		
Sida espinosa	1.04E-04		
Sporobolus indicus	2.74E-02		
Cenchrus echinatus	5.59E-04	2.06E-04	
Crotalaria pumila	2.04E-02	3.52E-04	
Chloris virgata	4.42E-03	1.72E-08	
Digitaria sanguinalis	1.07E-01	2.20E-05	
Desmodium aparines	1.23E-04	6.40E-04	
Eleusine indica	1.66E-06	2.46E-03	
Paspalum plicatum	2.60E-08	3.19E+00	
Cynodon dactylon	6.75E-01	5.48E-01	2.47E-03
Dalea leporina	6.09E-01	2.10E-03	8.40E-04
Aeschynomene			
longifolia	0.00387962	0.63610907	3.20994992
Aristida appressa	0.00588217	0.00024822	0.00032438
Eragrostis mexicana	0.00244391	0.14640181	1.087E-08
Eriosema pulchelum	1.2981E-07	1.9974E-05	2.1686E-06
Euphorbia hirta	3.1415E-06	3.4475E-07	3.0437E-06
Paspalum notatum	0.00010627	0.01087129	4.8623E-05
Rhynchelytrum			
repens	0.0886056	16.3523193	0.50203513
Zinnia angustifolia	0.00111209	6.0244E-06	0.01002643
Zornia reticulata	0.00093057	6.0331E-07	0.38391218
Chamaechrista			
nictitans	1.2981E-07		0.00011285
Tagetes micrantha	4.0502E-06	0.05528807	0.19688452
Aeschynomene			
americana		3.8439E-06	
Cosmos bipinnatus		0.00036153	9.3267E-06

Eleusine indica	0.98
Paspalum plicatum	0.96
Riqueza	27
Shannon	3.98
Shannon max	4.75
Equidad	83%

Chamaecrista			
rotundifolia		0.00121239	0.00015294
Heterotheca			
inuloides		1.7927E-06	6.1145E-07
Macroptilium			
gibbosifolium		0.00206618	2.9534E-05
Cyperus amabilis		5.17E-07	6.3749E-05
Cyperus esculentus		1.7237E-08	1.1088E-05
Sida collina		9.9977E-07	1.4186E-06
Sorgastrum nutans		4.2824E-06	0.00017543
Aristida divaricata			0.00585471
Bouteloua repens			4.5927E-05
Desmodium			
distortum			0.00012326
Lepidium sp.			1.9566E-07
Shruhria pinnata			0.0002935
Zinnia peruviana			0.00149573
Bidens pilosa	0.00214534		6.2504E-05
Dalea humilis	0.00162956		3.4046E-05
Mitracarpus hirtus	0.00011492		2.2306E-05
Muhlenbergia sp.	5.8416E-08		0.00396072
Amaranthus hibridus		5.5461E-06	
Crotalaria sagittalis		1.379E-07	
Eragrostis plumbea		6.7297E-05	
Paspalum convexum		1.3143E-07	
Richardia scabra		7.1707E-06	
Setaria geniculata		0.02425878	
Taraxacum officinale		2.7912E-05	
Tithonia tubaeformis		0.00100132	

Los valores de diversidad β (Cuadro 5) obtenidos en los tres bancos de material geológico revelaron que La Goterita es el que presenta la mayor diversidad con 37 especies, seguida por La Picuda con 32 y La Soledad con 27 especies.

En cuanto a los valores de similitud obtenidos con el ïndice de Jaccard en donde se observa que La Goterita y La Picuda tienen mayor similitud entre si.

Cuadro 5. Valores de Diversidad β (en diagonal) y valores de similitud en tres minas a cielo abierto abandonadas

	soledad	goterita	picuda
soledad	27	37%	42%
goterita	43% (20)	37	36%
picuda	41% (17)	48% (22)	32

XVII Semana de la Investigación Científica

Conclusiones

Las especies de las familias Poaceae, Leguminosae y Asteraceae son las más importantes en el establecimiento de herbáceas en minas de expltación geológica a cielo abierto, pues el número de especies dentro de éstas familias es elevado.

Especies como Rhynchelytrum repens, Tagetes micrantha, *Aeschynomene villosa var. longifolia y Cynodon dactylon* se establecen rápidamente y alcanzan valores de importancia altos en pocos años.

Bibliografía

Jonson MS, Bradshaw, AD. 1979. Principies for the restoration of disturbed and degraded land. Appl. Biol. 4:141-200.

Matteucci y Colma. 1982. Metodología para el estudio de la vegetación. Secretaria General de la organización de los estudios Americanos. Programa Regional de Desarrollo Científico y Tecnológico. Washington, D.C. 163 p.

Lawrence R. Walker an Roger del Moral. 2003. Primary succession and ecosystem rehabilitation. Cambridge University Press. 442 p.