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Abstract
Ecological and eco-social network models were constructed with different levels of com-

plexity in order to represent and evaluate management strategies for controlling the alien

species Pterois volitans in Chinchorro bank (Mexican Caribbean). Levins´s loop analysis

was used as a methodological framework for assessing the local stability (considered as a

component of sustainability) of the modeled management interventions represented by vari-

ous scenarios. The results provided by models of different complexity (models 1 through 4)

showed that a reduction of coral species cover would drive the system to unstable states. In

the absence of the alien lionfish, the simultaneous fishing of large benthic epifaunal species,

adult herbivorous fish and adult carnivorous fish could be sustainable only if the coral

species present high levels of cover (models 2 and 3). Once the lionfish is added to the sim-

ulations (models 4 and 5), the analysis suggests that although the exploitation or removal

of lionfish from shallow waters may be locally stable, it remains necessary to implement

additional and concurrent human interventions that increase the holistic sustainability of the

control strategy. The supplementary interventions would require the implementation of pro-

grams for: (1) the restoration of corals for increasing their cover, (2) the exploitation or

removal of lionfish from deeper waters (decreasing the chance of source/sink meta-popula-

tion dynamics) and (3) the implementation of bans and re-stocking programs for carnivorous

fishes (such as grouper) that increase the predation and competition pressure on lionfish

(i.e. biological control). An effective control management for the alien lionfish at Chinchorro

bank should not be optimized for a single action plan: instead, we should investigate the

concurrent implementation of multiple strategies.
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Introduction
In the last three decades, there has been a growing interest in the study of the wide and rapid
spread of the two alien lionfish species, Pterois volitans and Pterois miles, into the western
Atlantic, Caribbean and Gulf of Mexico [1]. These are the first marine fish known to invade
such large ecosystems [2]. The presence of this species seems to be the consequence of acciden-
tal escape or intentional introduction from aquaria in Florida in the last decade [3]. P. volitans
is presently one of the most important predators in such ecosystems, reaching densities several
orders of magnitude higher than observed in native environments [1]. Reports show that
along the coast of North Carolina this alien species reaches an average density of 21 individuals
ha-1 [4], and estimates from the Bahamian coral reefs reaches a mean density of 390 individuals
ha-1 [5], which is nearly five times greater than have been reported from its native Pacific range
[6].

For these reasons, the presence of this voracious, carnivorous fish could be considered as an
additional perturbation factor to ecosystems already highly stressed by overexploitation, tour-
ism, pollution, carbonate production decline and climate change [7]. Its presence could easily
lead to a phase-shift transition from corals to fleshy macroalgae (as the dominant species) [8].
In addition to these disturbances, lionfish predation also decreases the overall biodiversity of
coral reefs, as it consumes a high variety of invertebrate and vertebrate prey species [9, 10, 11].
Indirectly, this alien species favors the live coral cover loss because it also consumes herbivores,
which reduces the grazing on algae, contributing to a shift to algal dominance [8]. Likewise,
lionfish invasion is a potential human health risk due to its venomous fin spines [1]. These
problems could produce negative impacts on fishery yields due to the predation and competi-
tion of lionfish on the early history stages of targeted fish, which would reduce their recruit-
ment [12]. Likewise, the attractiveness of scuba diving destinations on Caribbean reefs will be
threatened due to scenic beauty loss, generated by extensive algal overgrowth on coral [13].

One of the most relevant characteristics of species introduced into a non-natural ecological
system is to show r-type dynamics [14]. The lionfish P. volitans is a clear example because of its
ability to spread in different environments, ranging from the outer margins of reefs to nursery
habitats such as sheltered mangrove lagoons [15]. In the Atlantic, lionfish shows high individ-
ual growth and reproductive rates [13] and a high population growth rate [8]. This behavior
could be explained by at least the following two reasons: (1) lionfish present predatory features
that are not recognized by the other species in invaded habitats, so that their prey cannot
detect it as a potential threat, making it a more successful predator than native predators (i.e.
native local community) [9]. This fish thus exhibits high predation efficiency (as an ambush-
unknown predator) mainly upon reef-fish species, including economically important fish and
crustaceans [16]; (2) this species shows a reduced mortality by predation, as most of its putative
predators are present only in low densities as a consequence of intensive (historical) exploita-
tion [17], even reaching larger sizes in invaded habitats compared to those recorded in its
native ecosystems [9]. Under such a particular scenario, the receiving ecological system could
be dominated by positive feedbacks at different levels of complexity (within the network),
showing unstable states [18]. For this reason, there is a growing concern that lionfish will affect
the structure and function of invaded marine ecosystems [1].

The study of a species within ecological and management context encounters at least two
types of constraints. On the one hand, the ecological system we wish to manage is composed of
a network of interacting populations, therefore, any natural or human intervention percolates
through this network, being amplified along some pathways, buffered along others, and possi-
bly even inverted. On the other hand, our interventions are frequently not constant: we act on
the system and also respond to it, so that our actions co-vary with the variables of the natural
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system, therefore we may introduce uncertainties [19]. Different research strategies, which are
not mutually exclusive, can be used to study, assess, and attempt to predict the transformations
in a natural system as a response to human interventions and/or introduction of exotic species.
These strategies include (1) the reduction of objects of study to their small parts, assuming that
this subsystem represents well the whole original ecosystem; (2) the statistical analysis of fac-
tors (weighted by their relative importance); (3) quantitative simulation requiring fairly precise
measurements of the variables and parameters and exact equations (this is quite difficult for
variables that cannot be measured); and (4) semi-quantitative or qualitative models (Loop
Analysis) that do not need precise nor quantitative equations: these allow the integration of
non-measurable variables and physically different forms, focusing on the nature of the change
(e.g. its sign) rather than its precise magnitude [20]. Likewise, it is a useful technique for esti-
mating the local stability (as a component of sustainability) of systems [20] and assessing the
propagation of direct and indirect effects as a response to external perturbations [21]. This
approach has been applied widely in different fields of the natural sciences [19, 22, 23, 24,].

Due to the difficulty in carrying out replicated experiments to estimate stability properties
under different regimes of disturbances (such as fishing and pollution) [25, 26], we chose loop
models to capture the general ecological and eco-social interactions underlying the invasion
and spread of the lionfish P. volitans in the Chinchorro bank coral reef ecosystem (Mexican
Caribbean). Simultaneously, we assessed the local stability (as an approach to holistic sustain-
ability) of a set of different ecological and eco-social models in response to alternative control
management scenarios to reduce the abundance of this alien species. We note that our models
should be considered as complementary and extended versions of the recently published age-
structured population model for the Western Atlantic Ocean [27] and quantitative trophic
models for the Caribbean coral reef ecosystem) [28] developed for lionfish recently.

Material and Methods

Ethic Statement
No protected and endangered species were involved in this study. No vertebrate neither inver-
tebrate species were collected in the present work. No sampling program was performed in situ
because the models were built taken information from scientific literature. No specific permis-
sions were required for this study area neither for the intellectual work.

Study area
For this work, we modeled the ecological coral reef system of Chinchorro bank (18° 35’N; 87°
23’W), Mexican Caribbean, which is located 30.8 km to the southwest of the Yucatán Penin-
sula. It is separated from the continent by a channel nearly 500 m in depth [29]. Chinchorro
bank is of ovoid shape, 43.2 km long and 18.0 km wide [30]. The reef lagoon is surrounded by
a semi-continuous barrier reef with a perimeter of approximately 115 km, an area exceeding
500 km2, and depths between 1 and 9 m in the south, and 2 m in the north. The reef patches
and coral knolls decrease in number and size from south to north [31].

Chinchorro bank is one of the largest platform coral reefs of the Caribbean Sea [29] and was
declared as a Biosphere Reserve in 1996 by the Mexican government [28]. Chinchorro bank
has received little impact from tourism and coastal human populations due to its isolation.
Nevertheless, it has been subjected to intense fishing activities for over 40 years, mainly target-
ing Panulirus argus (Caribbean spiny lobster), Strombus gigas (queen conch), and various
other fish species. These fisheries have strongly impacted P. argus and S. gigas, decreasing their
abundances since the late 1980s. The exploitation of reef fishes belonging to the families Serra-
nidae (groupers), Lutjanidae (snappers), and Haemulidae (grunts) in Chinchorro Bank has
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also been permanent and historical. However, the reef fish harvest increased especially when
the Mexican fishing authority (dependent on the federal government) implemented bans for
the harvest on the queen conch (S. gigas) and the spiny lobster (P. argus). Likewise, the reef of
Chincorro Bank includes four cays that cover 0.4% of the total reserve surface, named North
Cay at the north, Central Cay in the center-east of the system, and Lobos Cay in the south. The
seawater is oligotrophic with sea surface temperature ranging from 27 to 29° C, and salinity
ranging from 36.6 to 36.9‰ [30]. Trade winds dominate this coral reef across the year,
although northern winds predominate between October and May [31]. In summer, the reef is
exposed to tropical storms and hurricanes that can reach level 5 on the Saffir-Simpson scale, as
was the case of Hurricane Dean in 2007.

Loop Analysis, a semi-quantitative modeling approach
Models of populations, communities or ecosystems represent only some selected relations of
the studied ecosystems in a qualitative or quantitative way [20]. Loop models provide a qualita-
tive or semi-quantitative framework for formulating the relationships between variables within
a particular system. It is also possible to estimate the local stability properties of the system
(sustainability) and to determinate the effects of external factors on the variables [20]. Loop
models show only the sign of a relationship, which indicates the type of influence each variable
has upon another (i.e., positive, negative or zero) (Fig 1). In ecological interactions, (+,-)
denotes a predator-prey, parasite-host, or resource-consumer relationship, (-,-) represents
competition between two species, whereas (+,+), (+,0), and (-,0) represent mutualism, com-
mensalism and amensalism, respectively. Each variable is represented by a node (large circle)
and edges (lines) representing directions and types of relationships: an arrow at one end indi-
cates a positive effect, a circle means the effect is negative and the lack of a symbol shows a null
effect. Loop Analysis is based on the correspondence between systems of differential equations
at equilibrium, community matrices and loop diagrams. Therefore, in the system, the element
aij of the matrix and the loop diagram represent the effect of variable j on the growth of variable
i when the equation:

dXi

dt
¼ fiðX1;X2;X3; . . . ;Xn;C1;C2;C3; . . . ;CnÞ ð1Þ

where the change in time of variable Xi, is a function fi of other interconnected variables Xn and
parameters Cn and is solved at equilibrium (X�). The link from Xj to Xi is similar to the αij in
[32], as follows:

aij ¼
@ðdXi

dt
Þ

@Xj

ð2Þ

where Xi is evaluated at a moving equilibrium for the system. The element of the graph repre-
senting the link from j to i is sign (αij)–whether positive, negative, or zero- where the function
sign (X) is 1 when X> 0, 0 when X = 0, and -1 when X< 0.

Local stability, as determined by the Routh-Hurwitz criteria, translates into loop terms as
Condition 1 when Fk < 0 for all k; i.e., Fk corresponds to the negative feedback on every level of
complexity (k) that must exceed the positive feedback. Condition 2 examines the relations
among feedbacks at different level k, using Routh-Hurwitz inequalities. This criterion indicates
that a moving equilibrium could be asymptotic or damped oscillatory stable, or contrary diver-
gent or undamped oscillatory unstable. This second condition was calculated by using the
expansion of the Routh-Hurwitz determinants in terms of feedbacks or loops. In the case of a
system of three variables the first inequality corresponds to F1�F2 +F3 > 0 [18, 20]. The
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Fig 1. Models 1 and 2. Ecological models 1 and 2 for the coral benthic system of Chinchorro bank (México). The baseline community matrices with the
nominal effect of j variable to i are also shown. The parenthesis shows the kind of intervention. For more explanation of the name of variables and interactions
see the text.

doi:10.1371/journal.pone.0130261.g001

Loop Models to Control Lionfish

PLOS ONE | DOI:10.1371/journal.pone.0130261 June 26, 2015 5 / 17



feedback for each level can also be calculated by estimating the characteristic polynomial
related to the Jacobian interaction matrix, in which the polynomial now can be written in
terms of the feedback notation as: F0 λ

n+F1 λ
n-1+F2 λ

n-2+. . ...+Fn-1 λ + Fn = 0, where F0� -1
and the Fn is the feedback of the entire system (n = total number of variables in the system).
The Levins’s stability criterion assumes that the system is locally stable when Fn is negative.
The stronger the negative feedback (Fn) becomes, the greater the resistance will be to external
change [20]. Based on this local stability criterion, it is possible to estimate the degree of resis-
tance to perturbations (as a measure of sustainability) of the system and, simultaneously, to
explore strategies to increase this resistance. Likewise, the semi-quantitative loop models allow
indicate what must be measured by identifying the self-dynamics and interactions that changes
the local stability [20]. It is relevant to indicate that the Loop Analysis does not permit to assess
the effect of the extinction of some variable on the model properties. In the present study, this
framework helps us to determine what scenarios for reduction of lionfish density (as control
mechanism) are locally stable (as an approach to holistically sustainable).

Selection of network boundaries, structure and assumptions
Five semi quantitative models were constructed considering the most important variables and
interactions before and after the invasion of the lionfish P. volitans. In the simplest version
(model 1), six variables are represented, and sequential models expand the boundaries until the
eco-social version of the model (model 5) contains 19 variables. It is important to indicate that
models 1, 2 and 3 represent different levels of ecological complexity before the invasion of lion-
fish, whereas in models 4 and 5 we added lionfish and social variables.

Most of trophic relationships among the variables were taken from [28], It should be noted
that, in all the models, some variables (the most relevant ones) were considered self-damping
(density-dependent growth rates) due to higher density close to carrying capacity or self-
enhanced (density-independent growth rates) as response to intensive harvest (reduction of
abundance) [19].Both self-dynamics can be demonstrated using the following difference (Rick-
er’s) equation:

f ðxÞ ¼ x � expr 1�x
kð Þ ð3Þ

where x is the abundance of a variable (species or functional group), r = intrinsic growth rate
and k = carrying capacity. This difference equation is considered the analogue of the logistic
differential equation with similar parameters.

For restoration or re-stocking program of a variable (self-damped dynamics), consider the
following extension of Eq 3:

f ðxÞ ¼ x � expr 1�x
kð Þ þ b

x
; ð4Þ

where b/x = the restoration or re-stocking rate of x. The derivative of (4) with respects to x
(self-damped dynamics) becomes as:

@f ðxÞ
@x

¼ expr 1�x
kð Þ � x � r

k
expr 1�x

kð Þ � b
x2

ð5Þ

therefore, the restoration or re-stocking of x will cause self-damping on itself.
By another side, the over-exploitation or destruction of x (self-enhanced dynamics)

becomes as:

f ðxÞ ¼ x � expr 1�x
k�h

xð Þ; ð6Þ
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where the parameter h/x is the harvest (or destruction) rate of x. The derivative of Eq (6) with
respects to x (self-dynamics) becomes:

@f ðxÞ
@x

¼ expr 1�x
k�h

xð Þ þ x � r � h
x2

expr 1�x
k�h

xð Þ � x � r
k

expr 1�x
k�h

xð Þ ð7Þ

thus, the over-exploitation or destruction of x will cause self-enhanced dynamics on x.
Model 1. This model includes six variables: detritus (D) (as a complex of microorganisms

and nutrients), phytoplankton (Phy), zooplankton (Zoo), soft corals (SoCo) (constituted by all
octocoral, such as Pseudopterogorgia spp.,Muricea spp., Plexaura spp., Pterogorgia spp., and
others), stony corals (StCo) (formed by hermatypic corals [e.g.,Montastraea spp., Diploria
spp., Siderastrea spp., Porites spp., Agaricia spp., and others] and hydrocorals [i.e.,Millepora
spp.]), and a group of benthic autotrophs (Aut) (including fleshy macroalgae, crustose calcare-
ous algae, articulated calcareous algae, and seagrass). Most of these groups were connected by
prey-predator relationships. An exception was the Aut, with a positive impact to detritus, and
the negative interaction (competition) between SoCo and StCo with the Aut. No interaction
between SoCo and StCo was considered because rigorous information is limited. The D, SoCo
and StCo were self-damped, that is, their abundance close to carrying capacity (healthy condi-
tions), and Zoo is self-enhanced due to high mortality and low density by predation (Fig 1A).
Table 1A shows the scenarios considered for the sustainability (stability) assessment.

Model 2. This model is the extension of model 1, including two new variables: the small
benthic epifauna (SBE) and the large benthic epifauna (LBE). The SBE comprises all small spe-
cies that live on reef benthos as amphipods, bivalves, chitons and gastropods, crabs, shrimps,
barnacles, bryozoans, hemichordates, isopods, polychaetes, tunicates, and other organisms.
The LBE incorporated larger species as asteroids, holothurians, echinoids, ophiuroids, octo-
puses, large gastropods (e.g., S. gigas), lobsters (e.g., P. argus), large crabs, sponges, and others.
Both variables were connected by predation with the other groups (Fig 1B). Table 1B summa-
rizes the scenarios simulated for the sustainability estimates.

Model 3. This model includes yet another six variables: (1) herbivore fish juveniles (HFj)
and adults (HFa) principally corresponding to scarids (parrotfishes), acanthurids (surgeon-
fish); (2) omnivore fish juveniles (OFj) and adults (OFa), which were mainly accounted for by
damselfish; and (3) carnivore fish juveniles (CFj) and adults (CFa), representing groupers,
snapper, jacks, barracudas, grunts and other reef carnivore fish. Within this model HFj and
OFj have a positive influence on HFa and OFa, respectively. These relationships are similar to
those described in population models [16]. CFj and CFa were connected by predation due to
cannibalism (Fig 2). The CFa was considered as top predator, which preys on OFa, OFj, HFa,
and HFj. The HFj and HFa have a negative (direct) influence on StCo as a consequence of an
incidental depredation.The scenarios considered to evaluate stability are visualized in
Table 1C.

Model 4. This model is the extension of model 3, including also the alien lionfish P. voli-
tans (LF). This variable was connected as predator upon D, SBE, LBE, HFj, HFa, OFj, OFa, and
CFj. The lionfish and CFa were qualitatively simulated as competitors due to cross-predation
(Fig 3). The scenarios considered for the assessment of sustainability are described in Table 1D.

Model 5. Finally, this model is a modification of model 4, separating the P. volitans into
two variables; the lionfish from shallow waters (LFs), corresponding to organisms inhabiting
benthic systems< 40 m depth, and the lionfish from deeper waters (LFd) inhabiting benthic
systems> 40 m depth. Both variables were related to the remaining ecological variables in a
manner similar to LF in model 4. In this model, we assume LFd is self-damped (density-depen-
dent growth rate) as a consequence of this group not being exploited (near carrying capacity)
and that LFd migrates to shallow water, increasing the abundance of LFs. Likewise, two
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variables related to fisheries were included: artisanal fishermen (F1) exploiting LBE, HFa, CFa,
and LFs, and control fishermen (F2) harvesting exclusively on LFs. The F1 were limited (self-
damping) in the number of boats permitted, and their harvest activities are controlled (by legis-
lation), whereas the F2 were self-enhancing because their activity is promoted by the authority.
F1 and F2 were connected to LFs and other groups by predation. The demand (DE) was also
included, and it has a positive influence on fishermen (F1 and F2), and the fishermen have a
negative effect on demand. This relationship represented a situation where the prices would be
determined by local market [19]. All commercial groups stimulate demand positively. DE is
self-enhancing because the market is dominated by positive feedbacks [33] (Fig 4). Table 1E
shows the scenarios simulated for the sustainability estimate. Due to the high complexity

Table 1. Routh-Hurwitz and Levins´s stability criteria (as sustainability measure) for the different models and scenarios simulated.

Stability criteria

Routh-Hurwitz Levins

Model/Intervention Assumptions 1°C 2°C Fn

(a) Model 1

Baseline SoCo-, StCo-, Aut0 yes no (-)4

Scenario 1A SoCo+, StCo+, Aut0 no no (+)4

(b) Model 2

Baseline SoCo-, StCo-, Aut0, LBE0 yes yes (-)4

Scenario 2A SoCo+, StCo+, Aut0, LBE0 no yes (+)4

Scenario 2B SoCo-, StCo-, Aut0, LBE+ no yes 0

(c) Model 3

Baseline SoCo-, StCo-, Aut0, LBE0, HFa0, CFa0 no yes (-)4

Scenario 3A SoCo+, StCo+, Aut0, LBE0, HFa0, CFa0 no yes (+)6

Scenario 3B SoCo-, StCo-, Aut0, LBE+, HFa+, CFa+ no yes (-)32

Scenario 3C SoCo+, StCo+, Aut0, LBE+, HFa+, CFa+ no yes (+)56

(d) Model 4

Baseline SoCo-, StCo-, Aut0, LBE0, HFa0, CFa0, LF+ no yes (-)6

Scenario 4A SoCo+, StCo+, Aut0, LBE0, HFa0, CFa0, LF+ no no (+)12

Scenario 4B SoCo+, StCo+, Aut0, LBE+, HFa+, CFa+, LF+ no no (+)220

Scenario 4C SoCo-, StCo-, Aut0, LBE+, HFa+, CFa+, LF+ no no (-)132

Scenario 4D SoCo+, StCo+, Aut0, LBE+, HFa+, CFa-, LF+ no no (+)356

Scenario 4E SoCo-, StCo-, Aut0, LBE+, HFa+, CFa-, LF+ no yes (-)228

(e) Model 5

Baseline F1 exploits LBE, HFa, CFa; and F2 exploits only LFs no yes (+)33

Scenario 5A F1 exploits LBE, HFa, CFa, LFs; and F2 exploits only LFs no yes (-)15

Scenario 5B F1 exploits LBE, HFa, CFa, LFs; and F2 exploits LFs, LFd no yes (-)20

Scenario 5C F1 exploits LBE, HFa, CFa, LFs, LFd;and F2 exploits LFs, LFd no yes (+)3

Scenario 5D F1 exploits LBE, HFa, CFa, LFs, LFd;and F2 exploits LFs, LFd and increases Cfa no yes (-)2

Scenario 5E F1 exploits LBE, HFa, LFs, LFd;and F2 exploits LFs, LFd no yes (+)16

Scenario 5F F1 exploits LBE, HFa, LFs, LFd;and F2 exploits LFs, LFd and increases CFa no yes (+)52

Local stability measures Routh-Hurwitz and Levins (Fn) criteria in the models and scenarios simulated. First criterion (1°C) describes stability condition,

and the second criterion (2°C) determines asymptotic or oscillation condition. The Levins’s (Fn) criterion can be used as an approach for holistic

sustainability. The assumptions considered were changes in the self-dynamics (damped ´-´and/or enhanced ´+´) for the variables in each modelaa The

names of the variables are described with details in Methods section.

doi:10.1371/journal.pone.0130261.t001
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Fig 2. Model 3. Ecological model 3 for the benthic-pelagic coral system of the Chinchorro bank (México). The baseline community matrix with the semi-
quantitative effect of j variable to i variable is also shown. The parenthesis shows the kind of intervention. For details see section of Methods.

doi:10.1371/journal.pone.0130261.g002
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Fig 3. Model 4. Benthic-pelagic ecological model 4, including the alien lionfish (LF) into the benthic-pelagic system of the Chinchorro bank (México). The
baseline community matrix with the semi-quantitative effect of j variable to i variable is also shown. The parenthesis shows the kind of intervention. See
Methods for more details.

doi:10.1371/journal.pone.0130261.g003
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represented by this model, the soft corals (SoCo) and stony corals (StCo) were only simulated
under self-damping dynamics, which would be a consequence of a permanent restoration
program.

Results
Model 1 shows that a perturbation impacting stony and soft-corals by reducing their abun-
dances far below their carrying capacity would produce an unstable (unsustainable) ecological
system under Routh-Hurwitz and Levins’s criteria (Table 1A). On the other hand, any restora-
tion program (baseline model) for corals that increases their abundances (near carrying capac-
ity) would be stable or sustainable (Table 1A) (Fig 1A). In the case of model 2 (including two
new variables) (Fig 1B), a similar pattern to model 1 is observed regarding the changes in coral
cover (Table 1B); however, an intensive exploitation of large benthic epifaunal species (LBE)
was found only to be asymptotically locally stable (scenario 2B) (Table 1B).

Table 1C presents the stability measurements from model 3 (Fig 2). In the case of the resto-
ration program for corals, stability would be partially obtained (baseline model). It is important
to indicate that under any restoration program for corals and an exploitation of LBE, HFa and
CFa would also be partially sustainable (baseline model) (Table 1C). However, if any perturba-
tion impacts stony and soft-corals negatively and simultaneously the fishermen intensively
exploit LBE, HFa and CFa induced dynamics that produce an unsustainable (unstable) system
(Table 1C).

The stability outcomes obtained from model 4 (Fig 3), which integrates the lionfish (LF) as
a variable into the system, are summarized in Table 1D. It is relevant to note that the most sus-
tainable scenario was obtained under the following simultaneous conditions: (1) restoration
program for corals, (2) fishing on LBE, HFa and LF, and (3) implementation of bans for the
fishery of carnivore fishes (CFa) (scenario 4E) (Table 1D). Likewise, any negative perturbation
on corals would drive the system towards unstable (unsustainable) states, which agree with the
results obtained in the model 1, 2 and 3 (Table 1A, 1B, 1C and 1D).

Table 1E shows the results of stability for the eco-social model 5 (Fig 4). In this case the sys-
tem reached the most highly partially stable state when the F1 exploits LBE, HFa, CFa and LFs,
and F2 exploits LFs and LFd (scenario 5B) (Table 1E). Therefore, an exploitation program of
lionfish inhabiting deeper waters should also be implemented. Likewise, a re-stocking program
to increase the abundance of the carnivorous fish (CFa) (as grouper species) would also achieve
the necessary stability (scenario 5D) (Table 1E). All characteristic polynomials regarded each
model/scenarios are summarized in S1 Text.

Discussion
It is widely recognized that accidental or planned introductions of alien species primarily moti-
vated by commercial and recreational purposes have resulted in significant ecological distur-
bances in aquatic and terrestrial systems, promoting the local reduction of native populations
(in some cases to the point of extinction, resulting in biodiversity loss) [1].

The qualitative or semi-quantitative models built and analyzed herein correspond to a par-
tial representation of the variables and interrelationships underlying the ecological and eco-
social dynamics of the Chinchorro bank ecosystem. This caveat, however, is applicable to any
type of model and independent of its level of complexity [34, 35]). In this sense, we recognize

Fig 4. Model 5. Ecological and social model 5 for the Chinchorro bank (México). The lionfish is separated in two meta-populations (from shallow and deeper
waters) and two kinds of fishers and the demand (from the market) are also integrated. The baseline community matrix with the semi-quantitative effect of j
variable to i variable is also shown. The parenthesis shows the kind of intervention. For more details of the variables and interactions see the text (Methods).

doi:10.1371/journal.pone.0130261.g004
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that the models presented have made use of at least five sources of simplifications: (1) we
reduced the system complexity through the composition of functional groups for the most vari-
ables of the model, an exception was the lionfish P. volitans; (2) only the native fishes were sep-
arated in two class groups (juveniles and adults) without enough scientific information about
their own dynamics, (3) we assumed the system (community-matrix) to be in a moving equi-
librium, (4) we included only the fishermen and demand coming from socio-economics field,
and (5) regardless of the well-known limitations of the Loop Analysis theoretical framework,
the models constructed represent the processes underlying the systems analyzed when only
considering short-term dynamics. Despite these limitations, we claim that the results obtained
are sufficiently robust given the agreement among models of different levels of complexity,
therefore permitting us both to compare different management strategies to control the alien
lionfish and to assess their consequences in the local stability or sustainability of the Chinch-
orro coral ecosystem. Moreover, for our purposes, the moving equilibrium is understood to be
a trajectory path in a short dynamic that includes the set of variables of the system from which
the system will not move unless perturbed. Loop Analysis is used to determine the direction of
change of the equilibrium values of any variable in response to changes in any parameter [18].
Likewise, it is recognized for its high correspondence between model predictions and
observed-empirical responses [36, 37, 38, 39], which is possible based on stable qualitative
community matrices.

The results obtained in the models 1, 2, 3, 4, and 5 showed clearly that a restoration program
for the soft- and hard corals, that is under self-damped dynamics, emerge as a locally stable or
sustainable human intervention independent of the model complexity level. This result agrees
with experimental studies in which the construction of artificial coral reefs improved the health
(increasing biodiversity and ecological complexity) of historically highly perturbed ecosystems
(i.e., that have suffered from stresses including fisheries, pollution, and eutrophication) [40].
Models 2 and 3 (before lionfish invasion) and model 4 with P. volitans showed that the exploi-
tation of species belonging to the LBE, HFa and CFa functional groups would be possible only
if a restoration program for corals is implemented concurrently. Likewise, the harvest of lion-
fish achieves the highest local stability or sustainable control management only when the CFa
are not exploited, agreeing with the conclusions described by [41, 42]. It is important to indi-
cate that species of grouper (within CFa) such as Epinephelus striatus andMycteroperca tigris
feed upon lionfish [43]. It has also been described that lionfish appeared to remain closer to ref-
uges at places with high grouper densities, suggesting that the grouper may reduce both the
abundance and consumption rates of lionfish [44]. However, it is not clear whether recruit-
ment of lionfish in non-reef benthic habitats without large predatory groupers results in an
increase (by migration) of lionfish in reef systems [45].

In the case where the lionfish from shallow and deeper waters are considered separately, the
situation is quite complex because the most sustainable scenario is achieved if the artisanal fish-
ermen exploit shallow stocks of lionfish and the control fishermen simultaneously exploit both
lionfish groups (scenario 5B). In contrast, if the control fishermen harvest only shallow stocks
of lionfish, the system would be locally unstable (baseline). These qualitative responses do not
agree with the outcomes described by [27, 28], who simulated dynamically different harvest
scenarios considering only lionfish from shallow waters. Therefore, more efforts should be
focused towards the implementation of new exploitation strategies, particularly for lionfish in
deeper waters because this group could be a source population for local shallow-water popula-
tions. This additional control strategy would be especially necessary in coastal areas where the
harvest has provoked local extinctions of large predator fish [46]. In such scenarios, a re-stock-
ing program for CFa (as groupers) should also be considered by the Mexican authorities
because this intervention would promote a holistic sustainability of the entire system (scenario
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5D). In this sense, large-bodied predatory fishes could be capable of controlling the fast spread
and population explosion of lionfish [4], although this opinion should be taken with caution as
there is evidence that native predators would not influence invasion success (i.e., colonization
or post-establishment population density) of lionfish on Caribbean reefs [47].

Our models show that an exploitation of P. volitans from shallow and deeper waters seems
to be a suitable control mechanism for this species at Chinchorro bank. However, this manage-
ment strategy should be pursued with care because exploitation for the human consumption
market could propagate unexpected negative long-term consequences (since this species could
be introduced in many other places for commercial proposes [48]. Likewise, it is necessary to
consider that complex ecosystems subjected to exploitation are continuously changing (exhib-
iting oscillatory dynamics as a consequence of the relative dominance of positive feedbacks),
which could promote negative effects on the health of the systems, reducing the effectiveness of
this control mechanism for P. volitans.

Conclusions
The loop model outcomes obtained in this work help us to better understand the possible con-
sequences of different control strategies for P. volitans at Chinchorro bank, especially when
the population dynamics of any species depends on a complex network of intercactions among
the biotic and abiotic components of the ecosystem [49]. The situation is even more complex
if we also consider the populations as meta-populations heterogeneously scattered in an envi-
ronment, which is also heterogeneous, where the extinction and colonization rates of an exotic
species would depend on the superposition of different co-existing meta-populations [50].
Although the harvest on lionfish from shallow waters as a control mechanisms was found to be
locally stable, agreeing in general terms with [25, 26, 51], it remains necessary to plan other
additional human interventions (within an ecosystem-wide adaptive management program),
which should include: (1) the restoration of corals, (2) the exploitation of lionfish from deeper
waters, (3) the implementation of bans and re-stocking program for carnivore fishes (as grou-
per), and (4) the exploitation of juvenile lionfishes, which in turn fed on recruits of native her-
bivore, carnivore and omnivore fishes [12]. Nevertheless, these management strategies should
be implemented simultaneously because implementation in isolation could have a negative
impact on lionfishes only at a local spatial scale [46]. Even though the current contribution
shows the importance of combining different types of studies that tackle the issue from several
angles, thereby providing robust conclusions, however, additional explorations should be also
performed in order to assess the impact of changes in the sign of interactions on the local sta-
bility properties of the system. Therefore, we should seek to implement multiple and simulta-
neous strategies to reduce the exotic lionfish population at Chinchorro bank (Mexico) and
bring it within sustainable boundaries. Additionally, the approach developed here should be
considered a general strategy for examining the consequences of natural changes and human
interventions in ecosystems.

Supporting Information
S1 Text. Characteristic polynomials. Characteristic polynomials, p(λ), for each model and
scenarios simulated. The polynomials were multiplied by (-1) due to F0 � -1 (for more details
see Methods).
(DOCX)
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